Grouped Data

Find the mean, standard deviation, median, upper quartile and $99^{\text {th }}$ percentile for the following grouped table in blue below (on the left).

Number of goals (x)	Frequency (f)	must create the	Midpoint x	$f x$	x^{2}	$f x^{2}$	UCB	$c f$ (running total of f)
$5 \leq x<9$	2		$\frac{5+9}{2}=7$	$2(7)=14$	$7^{2}=49$	$2(49)=98$	9	2
$9 \leq x<15$	9		$\frac{9+15}{2}=12$	$9(12)=108$	$12^{2}=144$	$9(144)=1296$	15	$2+9=11$
$15 \leq x<21$	20		$\frac{15+21}{2}=18$	$20(18)=360$	$18^{2}=324$	$20(324)=6480$	21	$11+20=31$
$21 \leq x<25$	13	following columns in yellow	$\frac{21+25}{2}=23$	13(23) $=299$	$23^{2}=529$	13(529) $=6877$	25	$31+13=44$
$25 \leq x<29$	8		$\frac{25+29}{2}=27$	$8(27)=216$	$27^{2}=729$	$8(729)=5832$	29	$44+8=52$
$29 \leq x<35$	3		$\frac{29+35}{2}=32$	$3(32)=96$	$32^{2}=1024$	$3(1024)=3072$	35	$52+3=55$
				$\sum f x=1093$		$\sum f x^{2}=23655$		

For mean and standard deviation we use the midpoints
For quartiles (median, lower quartile and upper quartile) we use the upper class boundaries (UCB) with the cumulative frequencies (cf)
Mean:

$$
\frac{\sum f x}{n}=\frac{14+108+360+299+216+96}{2+9+20+13+8+3}=\frac{1093}{55}=19.87
$$

Standard Deviation:

$$
\sqrt{\frac{\sum f x^{2}}{n}-\bar{x}^{2}}=\sqrt{\frac{98+1296+6480+6877+5832+3072}{2+9+20+13+8+3}-19.87^{2}}=\sqrt{\frac{23655}{55}-19.87^{2}}=5.93
$$

Note: You could also have used your calculator to get the mean and standard deviation, which is far quicker. See my full data cheat sheet to find out how

Quartiles:

This is longer. We MUST INTERPOLATE using the UCB and cf columns. We CANNOT use the calculator for quartiles with grouped data.
Median:
Find $\frac{n}{2}$
$\frac{55}{2}=27.5$ th value

Way 1:
See where 27.5 would insert in the cf column and drop down to the next row

Number of goals (x)	\boldsymbol{f}	UCB	$\boldsymbol{c f}$
$5 \leq x<9$	2	9	2
$9 \leq x<15$	9	15	11
$15 \leq x<21$	20	21	31
$21 \leq x<25$	13	25	44
$25 \leq x<29$	8	29	52
$29 \leq x<35$	3	35	55

Apply the formula:

$$
\begin{aligned}
& \mathrm{LCB}+\frac{\text { how many in }}{\text { group total }} \times \text { class width } \\
& 15+\frac{27.5-11}{20} \times(21-15)=44.9
\end{aligned}
$$

Way 2:
Find where the 27.5 th value INSERTS in the cf column and zoom in on the box above and below this with the UCB column also

UCB	$c f$
15	11
x	27.5
21	31

Now interpolate

$\frac{x-15}{21-15}=\frac{27.5-11}{31-11} \Leftrightarrow \frac{x-15}{6}=0.825 \Leftrightarrow x=19.95$

Upper Quartile:

Find $\frac{3 n}{4}$

$$
\frac{3(55)}{4}=41.25 t h \text { value }
$$

Way 1:
See where 41.25 would insert in the cf column and drop down to the next row

Number of goals (x)	\boldsymbol{f}	UCB	$\boldsymbol{c f}$
$5 \leq x<9$	2	9	2
$9 \leq x<15$	9	15	11
$15 \leq x<21$	20	21	31
$21 \leq x<25$	13	25	44
$25 \leq x<29$	8	29	52
$29 \leq x<35$	3	35	55

Apply the formula:

$$
\mathrm{LCB}+\frac{\text { how many in }}{\text { group total }} \times \text { class width }
$$

$$
21+\frac{41.25-31}{13} \times(25-21)=24.2
$$

Way 2:
Find where the 41.25 th value INSERTS in the cf column and zoom in on the box above and below this with the UCB column also

UCB	$c f$
21	31
x	41.25
25	44

Now interpolate
$\frac{x-21}{25-21}=\frac{41.25-31}{44-31} \Leftrightarrow \frac{x-21}{4}=0.788 \Leftrightarrow x=24.2$

99 ${ }^{\text {th }}$ percentile:

$$
\begin{gathered}
\text { Find } \frac{99}{100} n \\
\frac{99}{100}(55)=54.45 t h \text { value }
\end{gathered}
$$

Way 1:
See where 54.45 would insert in the cf column and drop down to the next row

Number of goals (x)	\boldsymbol{f}	UCB	$\boldsymbol{c f}$
$5 \leq x<9$	2	9	2
$9 \leq x<15$	9	15	11
$15 \leq x<21$	20	21	31
$21 \leq x<25$	13	25	44
$25 \leq x<29$	8	29	52
$29 \leq x<35$	3	35	55

Apply the formula:

$$
\mathrm{LCB}+\frac{\text { how many in }}{\text { group total }} \times \text { class width }
$$

$$
29+\frac{54.45-52}{3} \times(35-29)=44.9
$$

Way 2 :

Find where the 54.45th value INSERTS in the of column and zoom in on the box above and below this with the UCB column also

UCB	$c f$
29	52
x	54.45
35	55

Now interpolate

$\frac{x-29}{35-29}=\frac{54.45-52}{55-52} \Leftrightarrow \frac{x-29}{6}=0.817 \Leftrightarrow x=33.9$

Note: We sometimes have gaps between the boundaries (between a upper-class boundary of a row and the lower class boundary of the subsequent row)

Here there is no gap

x	f
$5 \leq x<9$	1
$9 \leq x<15$	3
$15 \leq x<21$	2

Here there is a gap

x	f
$5-9$	1
$10-15$	3
$16-21$	2

We close the gap

x	f	Closing the gap gives:
$5-9$	1	$4.5 \leq x<9.5$
$10-15$	3	$9.5 \leq x<15.5$
$16-21$	2	$15.5 \leq x<21$

We then procced as normal

x	f
$4.5 \leq x<9.5$	1
$9.5 \leq x<15.5$	3
$15.5 \leq x<21$	2

